

I sensori per la robotica mobile

Giovanni De Luca www.delucagiovanni.com deluca@lns.infn.it

Sensori per la robotica

Sensori propriocettivi (PC)

 Misurano grandezze "proprie" cioè relative allo stato interno del robot: es. velocità delle ruote, coppie motrici, carica delle batterie, accelerazione, assetto, ecc.

Sensori eterocettivi (EC)

 Misurano grandezze esterne al robot, cioè proprie dell'ambiente in cui il robot opera: ed. distanze da muri, campo magnetico, posizione di oggetti, ecc.

Sensori passivi (SP)

 Per effettuare le misurazioni utilizzano l'energia fornita dall'ambiente (non confondere con l'energia necessaria per essere alimentati)

Sensori attivi (SA)

 Utilizzano la propria energia, ma in questo modo possono modificare l'ambiente

Sensori per la robotica

■ Tre famiglie principali

- □ Sensori analogici
 - Quando i valori del segnale generato sono continui (infiniti)
 Abbiamo bisogno di convertirli con un ADC -> uC
- □ Sensori digitali
 - Quando il segnale può assumere soltanto valori appartenenti ad un insieme discreto: 5Volt, risoluzione 8bit, 256 livelli ogni livello = 0,01953125 Volt)
- □ Sensori binari on/off
 - Sono sensori a soglia che danno in uscita solo 2 livelli, zero o uno.

Giovanni De Luca

Tipi di sensori

Categoria	Sensore	Tipo
Sensori tattili o di "vicinanza"	Sensori di contatto (on/off)	EC - SP
	Sensori di prossimità (induttivi/capacitivi)	EC - SA
	Sensori di distanza (induttivi/capacitivi)	EC - SA
Sensori alle ruote motrici	Encoder potenziometrici	PC - SP
	Encoder ottici, magnetici, effetto Hall, induttivi, capacitivi, syncro e resolver	PC - SA
Sensori di orientamento rispetto a un riferimento fisso	Bussole e girobussole	EC - SP
	Giroscopi	PC - SP
	Inclinometri	EC - SP/A
Sensori di posizione cartesiana rispetto a un riferimento fisso	GPS (solo per outdoor)	EC - SA
	Guide (Beacons) ottiche o RF	EC - SA
	Guide a ultrasuoni	EC - SA
	Guide a riflessione	EC - SA

Tipi di sensori

Categoria	Sensore	Tipo
Sensori attivi di distanza (active ranging)	Sensori a riflessione	EC - SA
	Sensori a ultrasuoni	EC - SA
	Laser range finders (Laser scanners)	EC - SA
	Triangolazione ottica (1D)	EC - SA
	Luce strutturata (2D)	EC - SA
Sensori di velocità relativa a oggetti fissi o mobili	Radar doppler	EC - SA
	Suono doppler	EC - SA
Sensori di visione: distanza, analisi features, segmentazione, object recognition	(Tele)-camere CCD o CMOS	EC - SA
	Soluzioni integrate (package) per visual ranging	EC - SA
	Soluzioni integrate (package) per object tracking	EC - SA

Caratteristiche di un sensore

Trasduttore = Sensore (per semplificare le definizioni)

- Risoluzione
- Ripetibilità
- Precisione/Accuratezza
- Isteresi
- Coefficiente di temperatura
- Linearità
 - Funzione di Trasferimento
 - Range dinamico
 - Ampiezza di banda
- Rumore e disturbi: rapporto segnale/rumore

Caratteristiche di un sensore

 Problematiche legate al rumore/errore/disturbo: modellazione con segnali stocastici

Tutti i sensori sono soggetti a rumore, ossia aggiungono al segnale di misura un segnale indesiderato, spesso dovute a fluttuazioni aleatorie o interferenze elettroniche. Se il rumore del sensore è inferiore alle fluttuazioni della misura o al rumore dell'elettronica presente a valle del sensore, allora è ininfluente; in caso contrario esso può degradare le prestazioni dell'intera catena impianto-sensore-controllore e renderla inadatta allo scopo.

Il rumore di solito è distribuito su un ampio spettro di frequenze e molte sorgenti di rumore producono uno rumore detto "rumore bianco" (white noise), dove la densità spettrale di potenza è uguale per ogni frequenza. Il rumore viene spesso caratterizzato fornendo la densità spettrale del valore efficace del rumore, data in unità V/\sqrt{Hz} .

Rumore di fondo

Il rumore di fondo (in inglese noise floor) è quel rumore che continua a essere presente nel circuito quando tutte le alimentazioni sono spente e il circuito è opportunamente messo a terra. Il rumore di fondo determina il più piccolo segnale che il circuito riesce a distinguere. L'obbiettivo del progettista è quello di avere l'ampiezza del segnale utile sopra il rumore di fondo, ma non così sopra da produrre saturazioni nel circuito stesso.

Nella teoria dei segnali, il rumore di fondo fornisce una misura della somma di tutte le sorgenti di rumore che agiscono in modo indesiderato sul sensore. In elettronica e nelle telecomunicazioni, questo rumore di fondo può includere il rumore termico e il la radiazione di corpo nero, e qualsiasi altro segnale di interferenza. Ad esempio, in un sismografo, il rumore di fondo può includere il traffico pedonale o automobilistico intorno al laboratorio.

Un modo abbastanza comune di abbassare il rumore di fondo in un'apparecchiatura è quello di diminuirne la temperatura di funzionamento, perché spesso la maggior componente del rumore di fondo è il rumore termico.

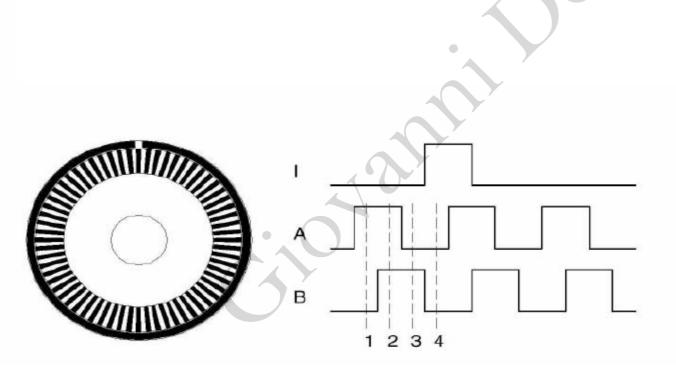
8

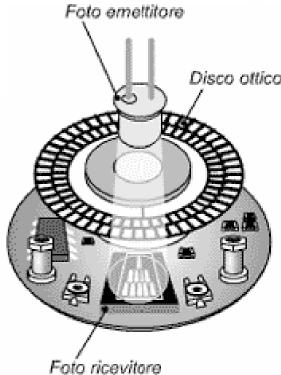
Le sfide della robotica mobile

- Obbiettivo: percepire, analizzare e interpretare lo stato dell'ambiente intorno al robot
- Le misure cambiano (sono relative a oggetti che hanno una loro dinamica) e sono fortemente affette da errore/rumore
- Esempi:
 - Variabilità dell'illuminazione
 - Riflessioni
 - Superfici diversamente assorbenti/riflettenti suono e luce
 - Sensitività della misura alla posa e all'ambiente

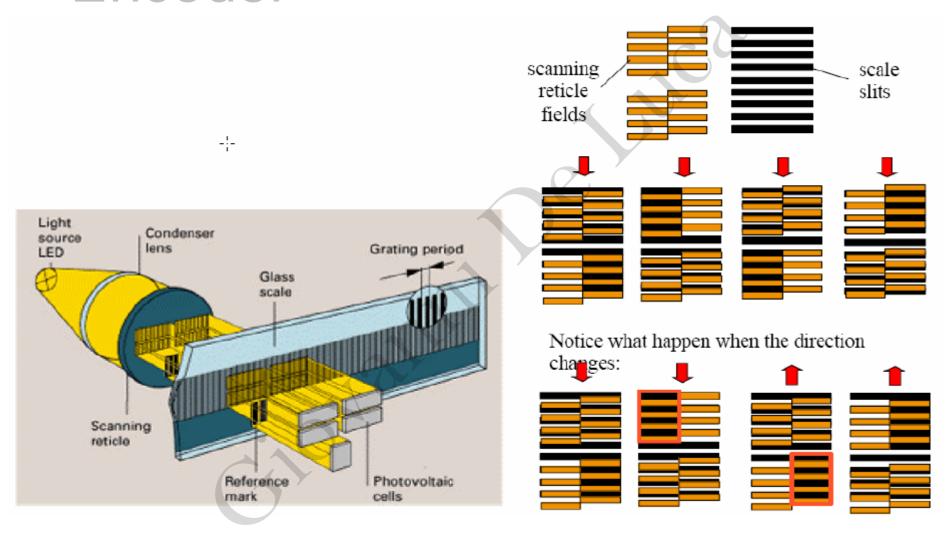
9

Le sfide della robotica mobile

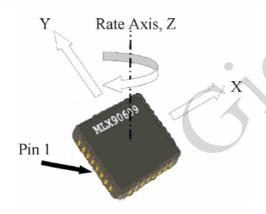

- Comportamento dei segnali dei sensori modellato da una distribuzione statistica
 - Si conosce poco o nulla delle cause degli errori random
 - Si usa spesso una distribuzione gaussiana o simmetrica, ma ciò può essere molto sbagliato

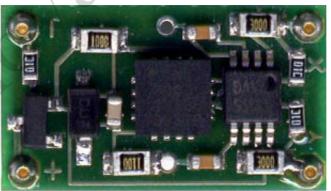

Esempio:

- I sensori a ultrasuoni (sonar) possono sovrastimare la distanza e quindi non hanno una distribuzione simmetrica dell'errore
- Bisogna considerare diverse situazioni: quando il segnale ritorna direttamente o quando ritorna dopo riflessioni multiple
- La visione stereo può correlare due immagini in modo scorretto e generare risultati senza senso


Encoder

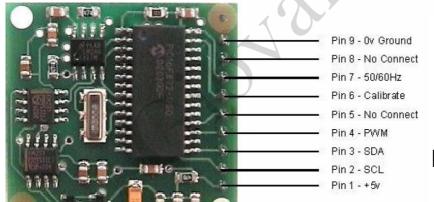
- Misurano la posizione o la velocità dei vari motori presenti sul robot
- Le misure vengono integrate per generare una stima della posizione (odometria)




Encoder

Sensori di orientamento (Heading)

- Possono esser PC (giroscopi, inclinometri) o EC (bussole) o misti (girobussole)
- Permettono di misurare l'angolo sia orizzontale sia verticale rispetto a una direzione di riferimento
- Congiuntamente a misure di velocità, permettono di integrare il moto, per stimare una posizione
- Questa procedura si chiama dead reckoning ed è propria della navigazione marittima

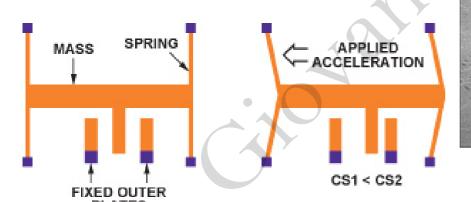


Giovanni De Luca

Sensori per la robotica

Bussole

- Strumento conosciuto fin dall'antichità
- Dipende dal campo magnetico terrestre (misura assoluta)
- Metodi: meccanico, effetto Hall, effetto magnetostrittivo
- Limiti
 - Debolezza del campo magnetico terrestre
 - Facilmente disturbato dalla presenza di oggetti metallici nei dintorni
 - Poco adatto per navigazione indoor

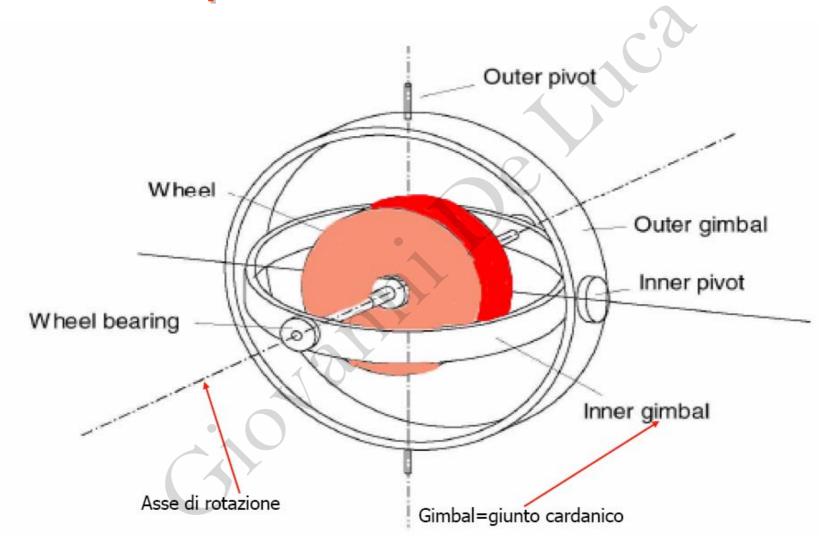


Interfaccia I2C e PWM

Accelerometri capacitivi MEMS

Micro Electro Mechanical Systems

Nell'accelerometro MEMS, la massa costituisce un'armatura di un condensatore, di solito si tratta di un'armatura centrale, compresa tra due armature fisse. Quello che elettricamente si va a realizzare è schematizzabile come due condensatori in serie con una connessione centrale comune corrispondente alla massa mobile (che è conduttiva). In figura è rappresentato un modello della struttura interna del sensore, viene evidenziato l'effetto provocato da un'accelerazione applicata al package del sensore: la massa interna si sposta e come si può vedere le capacità dei due condensatori variano. In questa configurazione, in condizioni di assenza di forza applicata, le capacità sono uguali, mentre quando è applicata una forza esse variano, precisamente una aumenta e l'altra diminuisce, in modo complementare (la loro somma è sempre costante).


Giroscopi meccanici

- Concetto: proprietà inerziali di un rotore che ruota velocemente: fenomeno della precessione
- Il momento angolare mantiene l'asse della ruota stabile
- Nessuna coppia è trasmessa dal supporto esterno all'asse della ruota
- La coppia di reazione è proporzionale alla velocità di rotazione, all'inerzia e alla velocità di precessione

$$\tau = \Gamma \omega \Omega$$

- Se l'asse di rotazione viene allineato lungo il meridiano N-S, la rotazione della Terra non influisce sulla misura
- Se viene puntato lungo la direzione E-O, l'asse orizzontale misura la rotazione della Terra

Giroscopi meccanici

Giroscopi differenziali

- Stesso concetto costruttivo, ma i giunti cardanici sono vincolati da una molla a torsione.
 - Si misura una velocità angolare invece di un angolo
- Altri giroscopi usano l'effetto delle forze di Coriolis per misurare le variazioni di assetto (ad es. Analog Device ADXL330

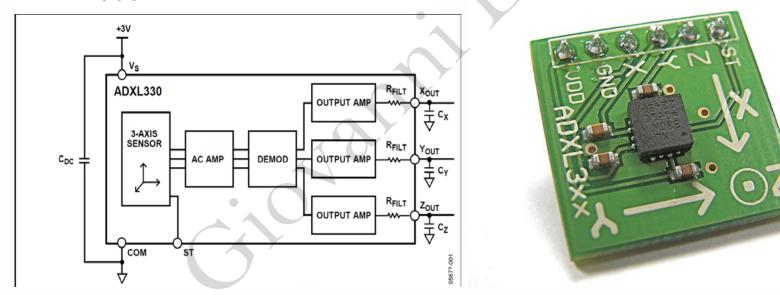


Figure 5. The frame and resonating mass are displaced laterally in response to the Coriolis effect. The displacement is determined from the change in capacitance between the Coriolis sense fingers on the frame and those attached to the substrate.

Giroscopi ottici – di Sagnac

- Utilizzano due raggi laser o monocromatici originati dalla stessa sorgente e "iniettati" in una fibra ottica avvolta intorno a un cilindro
- Uno gira in un senso, l'altro in senso opposto
- Il raggio che gira nella direzione di rotazione
 - Percorre un cammino più corto, mostra una frequenza maggiore
 - La differenza di frequenza tra i due raggi è proporzionale alla velocità angolare del cilindro
- Sono sensori a stato solido che possono facilmente essere integrati direttamente su silicio insieme all'elettronica

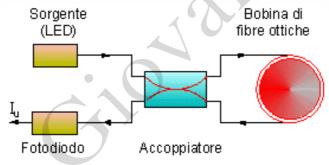
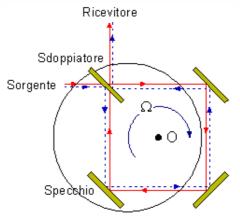
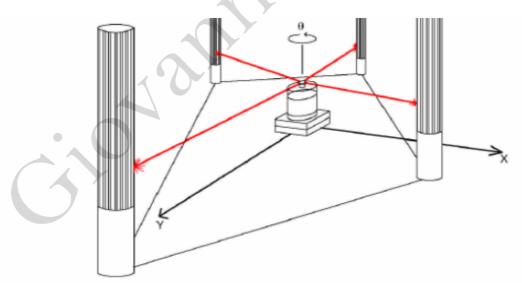
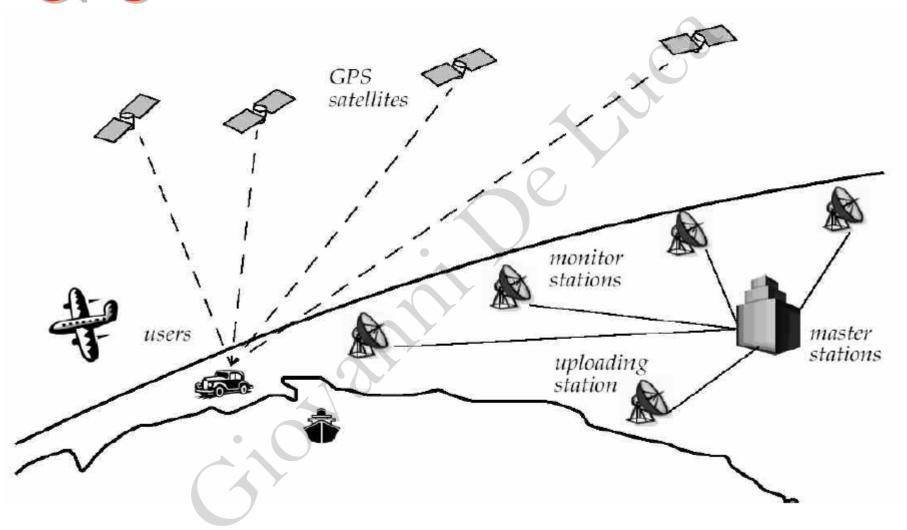


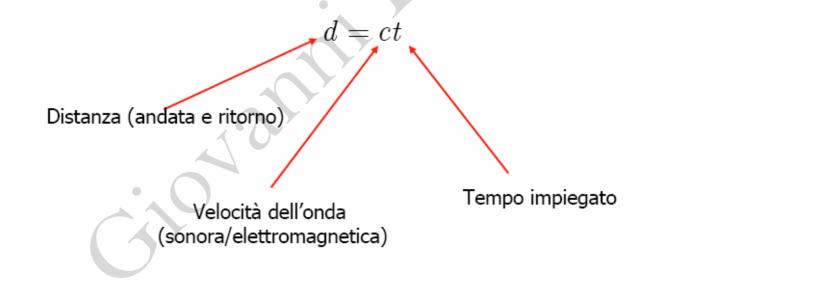
Figura 2 - Schema semplificato di un giroscopio a fibre ottiche


Figura 1 - Schema di principio di un giroscopio laser ad anello

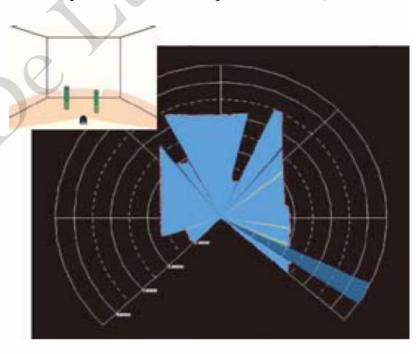
Beacon

- Sono degli apparati di guida con una posizione assoluta nota. Si chiamano anche landmarks e possono essere naturali o artificiali
 - Conosciuti e usati fin dall'antichità: sole montagne, campanili, fari
- Insostituibili per interni, dove il GPS è inefficace
- Costosi, richiedono interventi sull'ambiente



GPS

Sensori di distanza


- Detti anche range sensors, misurano distanze "grandi"
- Utilizzano il "tempo di volo" (time-of-flight)
- Si adoperano sensori a ultrasuoni o laser che utilizzano la conoscenza della velocità del suono o della luce per ricavare la distanza

Sensori di distanza

- Velocità di propagazione del suono 0.3 m/ms
- Velocità di propagazione della luce (nel vuoto) 0.3 m/ns
- Rapporto 10⁶
- 3 m
 - 10 ms per il suono
 - solo 10 ns per un sensore laser
 - difficile da misurare
 - sensori laser costosi e delicati

Interfaccia USB e Seriale RS232

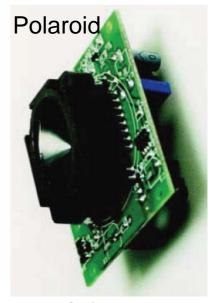
Sensori di distanza

- La qualità delle misure dipende da
 - Incertezze sul tempo di arrivo del segnale riflesso (laser e sonar)
 - Incertezze sul tempo di volo (laser)
 - Angolo di apertura della trasmissione (sonar)
 - Interazioni (assorbimento ecc.) con la superficie
 - Variazione della velocità di propogazione
 - Eventuale velocità del robot o dell'oggetto

Sensori a ultrasuoni

- Viene generato e trasmesso un pacchetto di onde sonore (di pressione) il cosiddetto chirp
- La distanza dall'oggetto che riflette il pacchetto è semplicemente

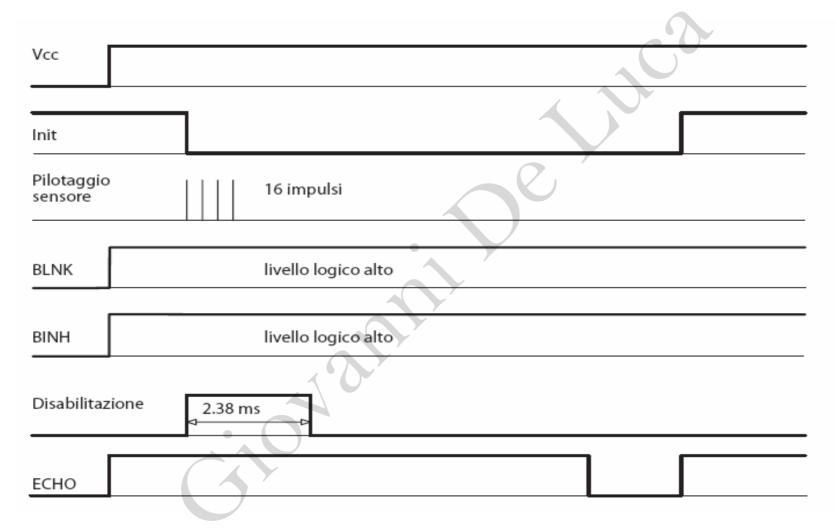
$$d = \frac{ct}{2}$$


La velocità del suono nell'aria è data da

$$c = \sqrt{\gamma R T}$$

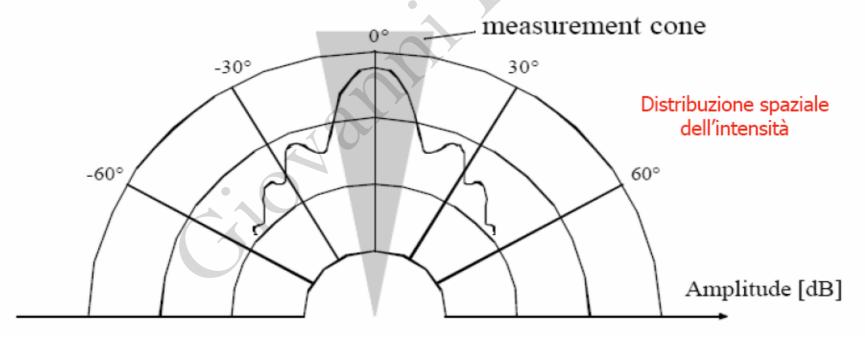
c= rapporto calore specifico

R =costante del gas


T =temperatura in gradi Kelvin

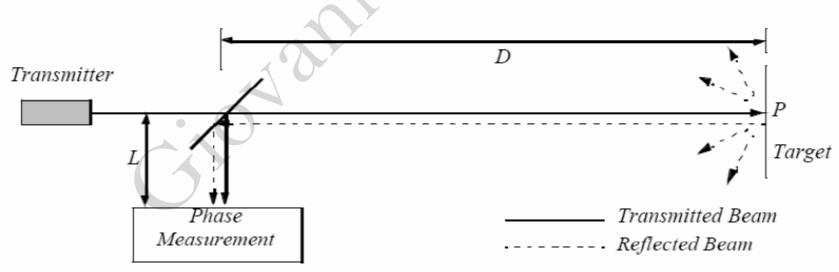
SRF

Nell'aria, la velocità del suono è di 331,5 m/s a 0 °C (pari a 1193,4 km/h) e di 343,4 m/s a 20 °C (e in generale varia secondo la relazione a = 331,4 + 0,62 t [misurata in °C]).


Sensore a ultrasuoni

Interfacce disponibili: I2C, PWM, SPI

Sensori a ultrasuoni


- Frequenze usate 40-200 kHz
- Generate da un sorgente piezoelettrica
- Trasmettitore e ricevitore possono essere separati o no
- Il suono di propaga in un cono
 - Angoli di apertura 20-40 gradi,

Sensori laser

Light Amplification by Stimulated Emission of Radiation

- Raggio trasmesso e ricevuto coassiali
- Raggio collimato che illumina il bersaglio
- Il ricevitore misura il tempo di volo (andata e ritorno)
- Ci può essere un meccanismo per variare alzo e angolo (misure 2D o 3D)

Sensori Laser

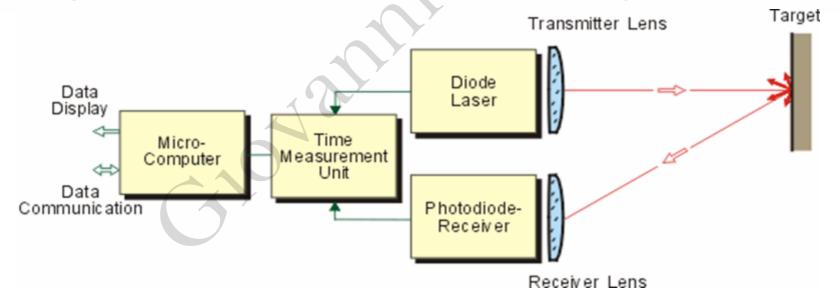
Light Amplification by Stimulated Emission of Radiation

$$\lambda = \frac{c}{f}$$
 $D' = L + 2D = L + \frac{\theta}{2\pi}\lambda$

c = velocità della luce

f = frequenza della modulante

D' = distanza totale percorsa


$$f=5$$
 MHz $\lambda=60$ m

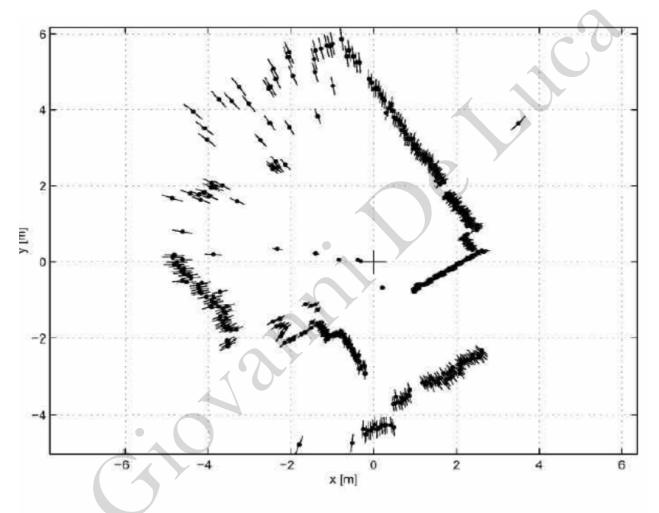
 La confidenza nella stima della fase (e quindi della distanza) è inversamente proporzionale al quadrato dell'ampiezza del segnale ricevuto

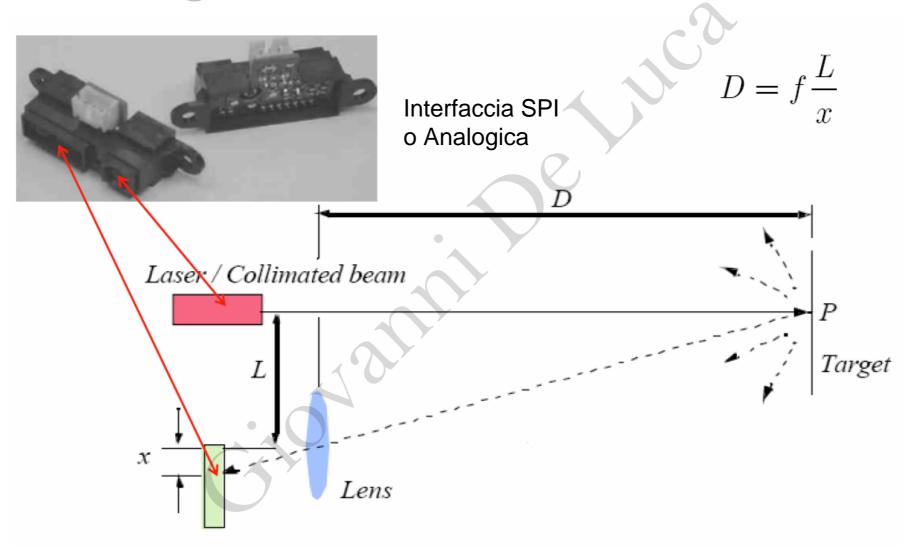
29

Sensori Laser

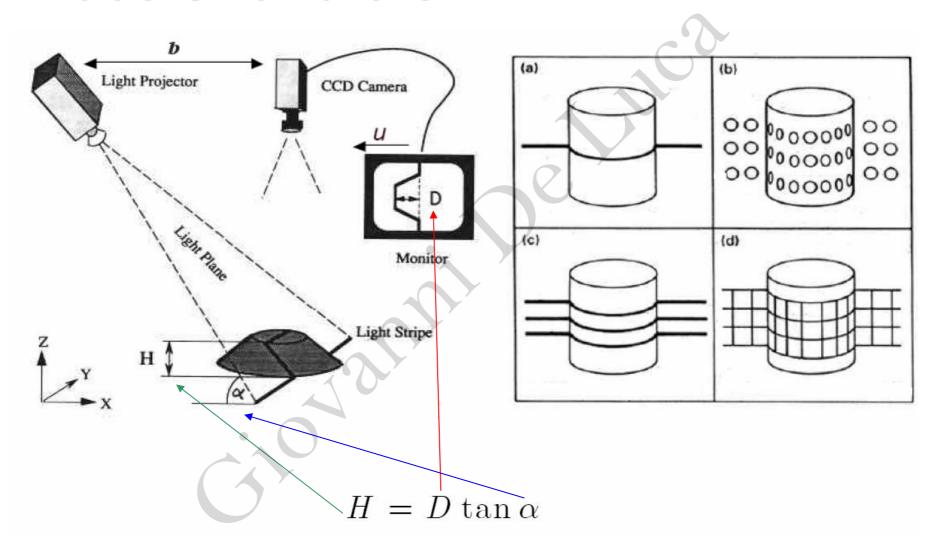
- Laser pulsati: si misura direttamente il tempo (dell'ordine dei picosecondi)
- Frequenza di battimento tra una modulante e l'onda riflessa
- Ritardo di fase
 - È più facile da realizzare tecnicamente dei due precedenti metodi

Sensori Laser




Immagine tipica da un laser scanner con specchio rotante. La lunghezza dei segmenti intorno ai punti di misura indica l'incertezza

31

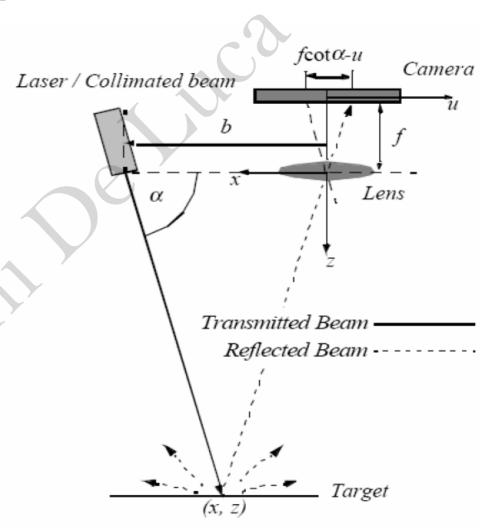

Triangolazione

- Si proiettano raggi di luce o pattern bidimensionali (light sheets)
- La luce riflessa è catturata da un sensore lineare o a matrice
- Si usano semplici relazioni trigonometriche

Triangolazione

Luce strutturata

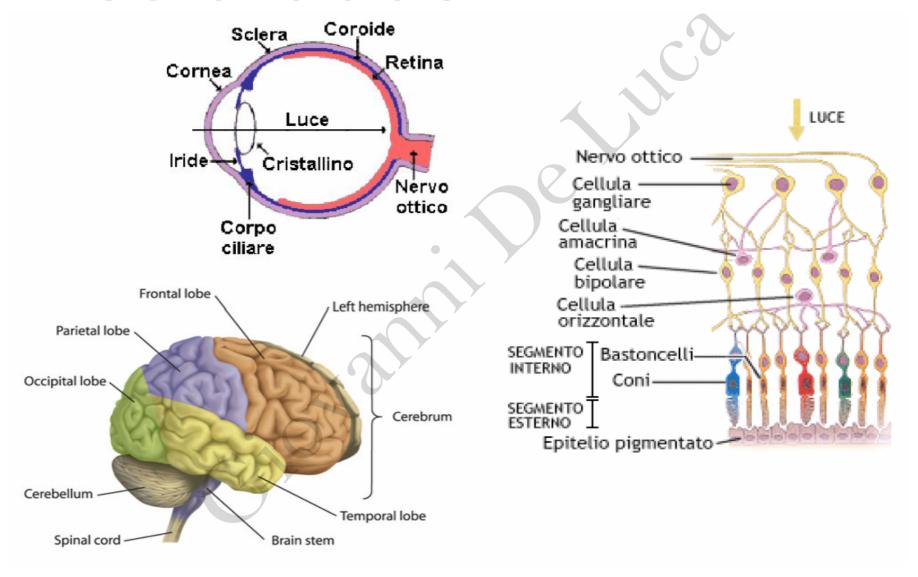
Luce strutturata


- Elimina il problema di trovare le corrispondenze proiettando un pattern noto sulla scena
- I pattern sono rilevati e interpretati da una videocamera
- La distanza da un punto illuminato può essere calcolata utilizzando semplici relazioni geometriche

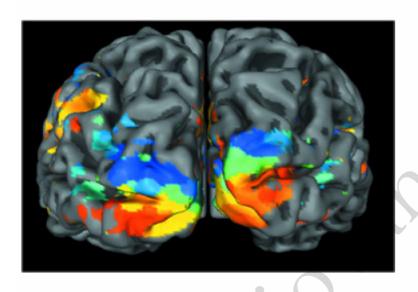
Luce strutturata

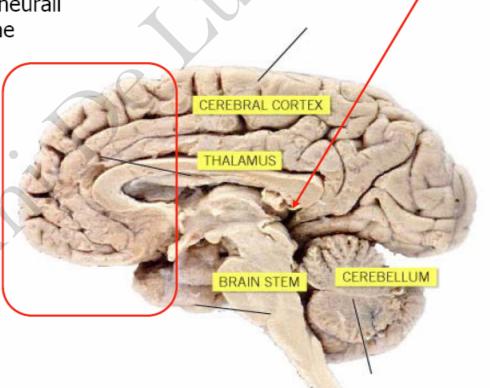
 Schema di principio monodimensionale

$$x = \frac{bu}{f \cot \alpha - u}$$


$$z = \frac{bf}{f \cot \alpha - u}$$

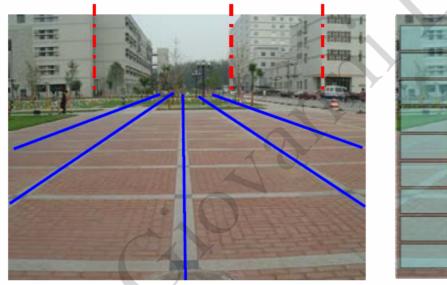
Visione

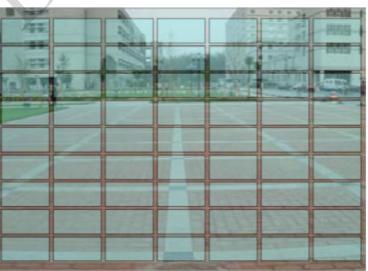

- Per gli esseri umani la vista (visione) è il senso più importante.
- La visione comprende tre fasi
 - Ricezione/trasduzione mediante l'occhio
 - Trasmissione mediante i nervi ottici
 - Elaborazione nei centri della visione del cervello


Visione naturale

Visione naturale

La risonanza magnetica dinamica rivela le aree del cervello interessate ai fenomeni neurali associati alla visione


chiasma ottico


Visione artificiale

Visione artificiale

- Proiezione da mondo 3D su un piano 2D: effetti di prospettiva e proiezione (matrici di trasformazione)
- Effetti della discretizzazione dovuta ai pixel del trasduttore (CCD o CMOS) Charge-Coupled Device, Complementary metal-oxide semiconductor
- Effetti di errore di disallineamento

Linee parallele

Linee convergenti

Vision based sensor - Hardware

Interfaccia RS232 e TTL

Software per Computer Vision

